Verbal nonsense reveals limitations of AI chatbots

The era of artificial intelligence (AI) chatbots that appear to understand and use language in a human-like manner has dawned. These chatbots rely on large language models, a type of neural network. However, a recent study has revealed a vulnerability in these large language models, as they can sometimes mistake nonsense for natural language. Researchers at Columbia University see this flaw as an opportunity to enhance chatbot performance and gain insights into how humans process language.

In their paper published in Nature Machine Intelligence, the scientists describe how they conducted experiments using nine different language models. They presented hundreds of pairs of sentences to human participants and asked them to select the sentence they believed sounded more natural, i.e., the one more likely to be encountered in everyday communication. The researchers then evaluated whether the AI models would provide the same judgments as the human participants.

In head-to-head comparisons, the more advanced AI models based on transformer neural networks generally outperformed simpler models, such as recurrent neural networks and statistical models that rely on word pair frequencies from the internet or online databases. However, all models exhibited errors, occasionally selecting sentences that sounded like gibberish to humans.

Dr. Nikolaus Kriegeskorte, a principal investigator at Columbia’s Zuckerman Institute and a coauthor of the paper, noted, “That some of the large language models perform as well as they do suggests that they capture something important that the simpler models are missing. That even the best models we studied still can be fooled by nonsense sentences shows that their computations are missing something about the way humans process language.”

For example, consider the following sentence pair:

  1. That is the narrative we have been sold.
  2. This is the week you have been dying.

Human participants in the study judged the first sentence as more natural. However, BERT, one of the advanced models, rated the second sentence as more natural, while GPT-2, another widely known model, correctly identified the first sentence as more natural, aligning with human judgments.

Christopher Baldassano, an assistant professor of psychology at Columbia and the senior author of the study, emphasized that all models had blind spots and labeled some sentences as meaningful when human participants considered them gibberish. He cautioned against relying too heavily on AI systems for important decisions, at least in their current state.

One of the intriguing findings of the study is the good yet imperfect performance of many models. Dr. Kriegeskorte emphasized the importance of understanding why these gaps exist and why certain models outperform others, as this knowledge can drive progress in language models.

The researchers are also curious about whether the computations in AI chatbots can inspire new scientific questions and hypotheses, potentially guiding neuroscientists toward a better understanding of human brain function. Analyzing the strengths and weaknesses of various chatbots and their underlying algorithms may contribute to answering this question.

Tal Golan, the paper’s corresponding author, who recently established his own lab at Ben-Gurion University of the Negev in Israel, highlighted the interest in understanding how people think and the unique processing of language by AI tools, offering a fresh perspective on human cognition.

Posted in

Aihub Team

Leave a Comment





OpenAI is not currently training GPT-5

OpenAI is not currently training GPT-5

Microsoft’s AI chatbot is ‘unhinged’ and wants to be human

Microsoft’s AI chatbot is ‘unhinged’ and wants to be human

Machine learning expert Jordan bemoans use of AI as catch-all term

Machine learning expert Jordan bemoans use of AI as catch-all term

ITN to explore how AI can be a force for good at the AI & Big Data Expo this November

ITN to explore how AI can be a force for good at the AI & Big Data Expo this November

Fiverr create Demand for AI expertise surges by 1,000%

Fiverr create Demand for AI expertise surges by 1,000%

Databricks acquires LLM pioneer MosaicML for $1.3B

Databricks acquires LLM pioneer MosaicML for $1.3B

AI think tank calls GPT-4 a risk to public safety

AI think tank calls GPT-4 a risk to public safety

AI vs Machine Learning

AI vs Machine Learning

US: AI Begins Taking Over Thousands of Human Jobs | Vantage on Firstpost

US: AI Begins Taking Over Thousands of Human Jobs | Vantage on Firstpost

Snowpark, Input Tables, & Sigma AI: The Future of Analytics

Snowpark, Input Tables, & Sigma AI: The Future of Analytics

How to Scale Service with Generative AI and Einstein GPT

How to Scale Service with Generative AI and Einstein GPT

Fight AI with AI: Going Beyond ChatGPT

Fight AI with AI: Going Beyond ChatGPT

Can China’s ChatGPT clones give it an edge over the U.S. in an A.I. arms race?

Can China’s ChatGPT clones give it an edge over the U.S. in an A.I. arms race?

What Is AI Artificial Intelligence What is Artificial Intelligence

What Is AI Artificial Intelligence What is Artificial Intelligence

Trustworthiness of AI applications in public sector

Trustworthiness of AI applications in public sector

Bringing AI closer to citizens – smart communities

 Bringing AI closer to citizens – smart communities

AI in practice and implementation strategies

AI in practice and implementation strategies

At July 4 cookouts with financial experts, AI takes centre stage while there are burgers, beers, and brainy bots.

At July 4 cookouts with financial experts, AI takes center stage while there are burgers, beers, and brainy bots.

Efficient Generative AI Summit

 Efficient Generative AI Summit

CDAO Chicag

CDAO Chicag

AI Hardware & Edge AI

AI Hardware & Edge AI

AI and the Future of Work

AI and the Future of Work

AI in Art and Creativity

AI in Art and Creativity

Exploring the Ethics of Artificial Intelligence

Exploring the Ethics of Artificial Intelligence

Demystifying Machine Learning

Demystifying Machine Learning

AI in healthcare

AI in Healthcare

New WEF research identifies revolutionary healthcare AI applications

New WEF research identifies revolutionary healthcare AI applications

Tesla’s AI supercomputer tripped the power grid

Tesla’s AI supercomputer tripped the power grid

Stephen Almond, ICO: Prioritise privacy when adopting generative AI

Stephen Almond, ICO: Prioritise privacy when adopting generative AI

Sony has a new ‘AI robotics’ drone division called Airpeak

Sony has a new ‘AI robotics’ drone division called Airpeak