This 3D printed gripper doesn’t need electronics to function

Researchers at the University of California San Diego, in collaboration with the BASF corporation, have developed a remarkable soft robotic gripper that boasts unique features. This gripper is 3D printed in one piece and does not require any electronics to function effectively.

The team’s objective was to create a soft gripper that could be used immediately after being 3D printed, complete with built-in gravity and touch sensors. The result is a gripper capable of picking up, holding, and releasing objects, a feat not achieved by any gripper before.

The gripper’s design incorporates a series of valves that enable it to grip upon contact and release at the right moment. Yichen Zhai, the leading author of the paper detailing the research, explains that by simply turning the gripper horizontally, a change in airflow triggers the release of the object held by its two fingers.

One of the remarkable aspects of this gripper is its fluidic logic, allowing it to remember when it has grasped an object and is holding onto it. When it senses the weight of the object pushing to the side as it rotates horizontally, it intuitively releases the object.

Soft robotics has great potential for safe human-robot interactions and delicate object handling. This gripper can be mounted on a robotic arm for various industrial manufacturing applications, such as food production and handling fruits and vegetables. It can also be used in research and exploration tasks. Furthermore, it can operate untethered, requiring only a bottle of high-pressure gas as its power source.

To overcome common issues faced with 3D-printed soft robots, such as stiffness, leaks, and the need for extensive post-processing and assembly, the researchers developed a new 3D printing method. Their innovative approach involves the printer nozzle tracing a continuous path through each layer, much like drawing a picture without lifting the pencil off the page. This method significantly reduces the likelihood of leaks and defects in the printed piece.

Additionally, the new printing method allows for the creation of thin walls, as small as 0.5 millimeters thick. This, in turn, results in a softer and more deformable structure, as the complex, curved shapes enable a higher range of deformation. The researchers based their method on the Eulerian path in graph theory, ensuring consistent printing of functional pneumatic soft robots with embedded control circuits.

This groundbreaking soft robotic gripper represents a significant step forward in robotics, with potential applications in various industries and research fields.

Posted in

Aihub Team

Leave a Comment





News firms seek transparency, collective negotiation over content use by AI makers - letter

News firms seek transparency, collective negotiation over content use by AI makers – letter

White House launches AI-based contest to secure government systems from hacks

White House launches AI-based contest to secure government systems from hacks

Britain appoints tech expert and diplomat to spearhead AI summit

Britain appoints tech expert and diplomat to spearhead AI summit

AI Drafted in War on Online Crimes Against Kids

AI Drafted in War on Online Crimes Against Kids

AI for Disaster Recovery: AI-powered systems for post-disaster recovery and reconstruction.

AI for Disaster Recovery: AI-powered systems for post-disaster recovery and reconstruction.

AI in Drug Repurposing: AI-driven drug discovery for repurposing existing medications.

AI in Drug Repurposing: AI-driven drug discovery for repurposing existing medications.

AI in Augmented Reality: Enhancing AR experiences with AI-generated content and interactions.

AI in Augmented Reality: Enhancing AR experiences with AI-generated content and interactions.

AI in Oil and Gas Exploration: AI applications in seismic data analysis for oil exploration.

AI in Oil and Gas Exploration: AI applications in seismic data analysis for oil exploration.

AI in Podcasting: AI-driven podcast transcription and content recommendation.

AI in Podcasting: AI-driven podcast transcription and content recommendation.

AI in Speech Recognition: Improving speech recognition and transcription with AI algorithms.

AI in Speech Recognition: Improving speech recognition and transcription with AI algorithms.

AI and Blockchain Integration: The potential of combining AI and blockchain technologies.

AI and Blockchain Integration: The potential of combining AI and blockchain technologies.

AI for Wildlife Tracking: AI-enabled tracking systems for studying animal migration and behavior.

AI for Wildlife Tracking: AI-enabled tracking systems for studying animal migration and behavior.

Combating Global Health Crises: The Power of AI in Epidemic Prediction and Prevention

Combating Global Health Crises: The Power of AI in Epidemic Prediction and Prevention

Global cloud market soars again, but AI could pose a risk

Global cloud market soars again, but AI could pose a risk

Interview Mrs.Anita Schjøll Brede

Interview Mrs.Anita Schjøll Brede

Interview with Mr.Jürgen Schmidhuber

Interview with Mr.Jürgen Schmidhuber

Interview with Mr.Fei-Fei Li

Interview with Dr.Fei-Fei Li

AI and Music Composition: The intersection of AI and creativity in composing music.

AI and Music Composition: The intersection of AI and creativity in composing music.

AI in Art Authentication: AI techniques for art forgery detection and provenance verification.

AI in Art Authentication: AI techniques for art forgery detection and provenance verification.

AI for Accessibility: How AI is making technology more accessible for individuals with disabilities.

AI for Accessibility: How AI is making technology more accessible for individuals with disabilities.

AI in Retail Personalization: Customizing shopping experiences with AI-driven recommendations.

AI in Retail Personalization: Customizing shopping experiences with AI-driven recommendations.

AI in Supply Chain Management: AI-driven optimization of supply chain logistics and inventory management.

AI in Supply Chain Management: AI-driven optimization of supply chain logistics and inventory management.

AI in Veterinary Medicine: AI applications for animal health diagnosis and treatment.

AI in Veterinary Medicine: AI applications for animal health diagnosis and treatment.

AI and Genome Sequencing: AI's contribution to accelerating genomic research and precision medicine.

AI and Genome Sequencing: AI’s contribution to accelerating genomic research and precision medicine.

AI and Drone Technology: AI's role in enhancing drone capabilities for various industries.

AI and Drone Technology: AI’s role in enhancing drone capabilities for various industries.

AI in Transportation: Innovations in autonomous vehicles and AI for traffic management.

AI in Transportation: Innovations in autonomous vehicles and AI for traffic management.

AI in Environmental Monitoring: AI applications for monitoring air and water quality.

AI in Environmental Monitoring: AI applications for monitoring air and water quality.

AI in Criminal Justice: AI's impact on crime prevention, offender profiling, and legal analytics.

AI in Criminal Justice: AI’s impact on crime prevention, offender profiling, and legal analytics.

AI for Elderly Care: Enhancing senior care with AI-powered health monitoring and companionship.

AI for Elderly Care: Enhancing senior care with AI-powered health monitoring and companionship.

AI and Disaster Prediction: Predicting natural disasters using AI-based models and algorithms.

AI and Disaster Prediction: Predicting natural disasters using AI-based models and algorithms.