Researchers develop low-cost sensor to enhance robots’ sense of touch

Researchers from Queen Mary University of London, in collaboration with teams from China and the USA, have developed an innovative L3 F-TOUCH sensor to enhance the tactile capabilities of robots. This sensor enables robots to “feel” objects and adjust their grip accordingly, a crucial step towards achieving human-level dexterity in manipulation and grasping.

The study, published in IEEE Robotics and Automation Letters, highlights the importance of reliable tactile information and force sensing in robot hands and graspers. The human hand possesses the ability to sense pressure, temperature, texture, and pain, as well as distinguish objects based on their shape, size, and weight. In contrast, many existing robot hands lack integrated haptic capabilities, making it challenging for them to handle objects effectively. Without a sense of touch and knowledge about the interaction forces, robots may struggle to maintain a secure grip on objects or handle delicate items without causing damage.

Led by Professor Kaspar Althoefer, the team presents the L3 F-TOUCH sensor, which stands for Lightweight, Low-cost, and wireLess communication. This high-resolution fingertip sensor offers a solution for measuring an object’s geometry and determining the forces required for interaction. Unlike other sensors that estimate interaction forces using camera images of soft elastomer deformation, the L3 F-TOUCH directly measures interaction forces through an integrated mechanical suspension structure with a mirror system, achieving higher accuracy and a wider measurement range.

The compact suspension structure allows the elastomer to deform upon contact with the surface, measuring high-resolution contact geometry exposed to external forces. The elastomer’s displacement is tracked using a special marker, enabling the measurement of contact forces along three major axes (x, y, and z) through a calibration process.

Professor Althoefer emphasizes that future work will focus on extending the sensor’s capabilities to measure rotational forces, such as twist, while remaining accurate and compact. This advancement will enable robots to have a more comprehensive sense of touch and improve their performance in manipulation tasks, including human-robot interaction scenarios like patient rehabilitation or assisting the elderly.

The breakthrough achieved with the L3 F-TOUCH sensor holds significant potential for the future of robotics. By providing robots with a sense of touch, they can handle objects more effectively and perform complex manipulation tasks with greater precision and reliability. This technology opens up new possibilities for more advanced and agile robots, ushering in a new era of robotic capabilities.

Posted in

Aihub Team

Leave a Comment





Sharing chemical knowledge between human and machine

Sharing chemical knowledge between human and machine

Scientists solve mystery of why thousands of octopus migrate to deep-sea thermal springs

Scientists solve mystery of why thousands of octopus migrate to deep-sea thermal springs

Planning algorithm enables high-performance flight

Planning algorithm enables high-performance flight

AI and the Future of Work: AI's impact on jobs and workforce transformation.

AI and the Future of Work: AI’s impact on jobs and workforce transformation.

AI for Disaster Relief Distribution: AI-optimized logistics for efficient disaster relief supply distribution.

AI for Disaster Relief Distribution: AI-optimized logistics for efficient disaster relief supply distribution.

AI for Food Quality Assurance: AI applications for monitoring food quality and safety.

AI for Food Quality Assurance: AI applications for monitoring food quality and safety.

AI for Mental Wellness Apps: AI-driven mental health applications and support platforms.

AI for Mental Wellness Apps: AI-driven mental health applications and support platforms.

AI in Dental Care: AI-assisted diagnostics and treatment planning in dentistry.

AI in Dental Care: AI-assisted diagnostics and treatment planning in dentistry.

AI in Language Education: AI-based language learning platforms and tools.

AI in Language Education: AI-based language learning platforms and tools.

AI in Oil Spill Cleanup: AI-driven approaches to manage and clean oil spills.

AI in Oil Spill Cleanup: AI-driven approaches to manage and clean oil spills.

AI in Sports Coaching: AI-powered coaching tools for athletes and teams.

AI in Sports Coaching: AI-powered coaching tools for athletes and teams.

AI unlikely to destroy most jobs, but clerical workers at risk, ILO says

AI unlikely to destroy most jobs, but clerical workers at risk, ILO says

Building new skills for existing employees top talent issue amid gen AI boom: Report

Building new skills for existing employees top talent issue amid gen AI boom: Report

Decoding future-ready talent strategies in the age of AI - ETHRWorldSEA

Decoding future-ready talent strategies in the age of AI – ETHRWorldSEA

Generative AI likely to augment rather than destroy jobs

Generative AI likely to augment rather than destroy jobs

Latest UN study finds artificial intelligence will surely take over these jobs soon: Report

Latest UN study finds artificial intelligence will surely take over these jobs soon: Report

Singapore workers are the world’s fastest in adopting AI skills, LinkedIn report says

Singapore workers are the world’s fastest in adopting AI skills, LinkedIn report says

AI and Gene Editing: AI's potential role in CRISPR gene editing technologies.

AI and Gene Editing: AI’s potential role in CRISPR gene editing technologies.

AI and Quantum Computing: Exploring the intersection of AI and quantum computing technologies.

AI and Quantum Computing: Exploring the intersection of AI and quantum computing technologies.

AI for Autonomous Drones: AI-driven decision-making in autonomous drone operations.

AI for Autonomous Drones: AI-driven decision-making in autonomous drone operations.

AI in Brain-Computer Interfaces: AI-powered BCI advancements for medical and assistive purposes.

AI in Brain-Computer Interfaces: AI-powered BCI advancements for medical and assistive purposes.

AI in Indigenous Language Preservation: Using AI to preserve and revitalize indigenous languages.

AI in Indigenous Language Preservation: Using AI to preserve and revitalize indigenous languages.

AI for Urban Planning: AI-driven models for urban infrastructure development and management.

AI for Urban Planning: AI-driven models for urban infrastructure development and management.

AMD: Almost half of enterprises risk ‘falling behind’ on AI

AMD: Almost half of enterprises risk ‘falling behind’ on AI

Study highlights impact of demographics on AI training

Study highlights impact of demographics on AI training

AI and Food Sustainability: AI applications for optimizing food production and reducing waste.

AI and Food Sustainability: AI applications for optimizing food production and reducing waste.

AI in Humanitarian Aid: AI's role in aiding humanitarian efforts and refugee assistance.

AI in Humanitarian Aid: AI’s role in aiding humanitarian efforts and refugee assistance.

AI for Wildlife Conservation: AI-driven approaches to protect endangered species and habitats.

AI for Wildlife Conservation: AI-driven approaches to protect endangered species and habitats.

AI in Ocean Exploration: AI applications in marine research and underwater robotics.

AI in Ocean Exploration: AI applications in marine research and underwater robotics.

AI and Drug Dosage Prediction: Personalized drug dosage recommendations using AI models.

AI and Drug Dosage Prediction: Personalized drug dosage recommendations using AI models.