Reinforcement learning allows underwater robots to locate and track objects underwater

Scientists from the Institut de Ciències del Mar (ICM-CSIC) in Barcelona, in collaboration with the Monterey Bay Aquarium Research Institute (MBARI) in California, the Universitat Politècnica de Catalunya (UPC), and the Universitat de Girona (UdG), have achieved a groundbreaking development in underwater robotics. They have demonstrated, for the first time, that reinforcement learning, a type of machine learning where a neural network learns the best actions to perform based on rewards, enables autonomous vehicles and underwater robots to locate and track marine objects and animals effectively.

The use of underwater robotics has become increasingly important for exploring the depths of the ocean, as these vehicles can reach depths of up to 4,000 meters and provide valuable in-situ data that complements satellite observations. This technology is instrumental in studying various phenomena, including CO2 capture by marine organisms, which plays a role in climate change regulation.

Reinforcement learning, commonly employed in control, robotics, and natural language processing applications like ChatGPT, allows neural networks to optimize specific tasks that would otherwise be challenging to achieve. By training the robots with this learning method, the researchers successfully optimized the trajectory of the vehicles, enabling them to locate and track moving underwater objects with precision.

Ivan Masmitjà, the lead author of the study, emphasizes the significance of this learning approach in advancing ecological research, such as studying migration and movement of marine species at different scales, using autonomous robots. Additionally, the technology’s progress will facilitate real-time monitoring of oceanographic instruments through a network of robots, with some operating on the surface and others on the seabed, transmitting data via satellite.

The team employed range acoustic techniques to estimate the position of objects based on distance measurements taken from different points. However, the accuracy of object localization depended on where the acoustic range measurements were taken. To address this issue, artificial intelligence, specifically reinforcement learning, was crucial in identifying the best points and determining the optimal trajectory for the robot.

The neural networks were trained using the computer cluster at the Barcelona Supercomputing Center (BSC-CNS), which houses one of Europe’s most powerful supercomputers. This significantly accelerated the parameter adjustments for different algorithms compared to conventional computers.

Overall, this breakthrough in underwater robotics and the successful application of reinforcement learning pave the way for more in-depth ecological studies, as well as enhanced oceanographic monitoring, through a network of autonomous underwater robots.

Posted in

Aihub Team

Leave a Comment





Sharing chemical knowledge between human and machine

Sharing chemical knowledge between human and machine

Scientists solve mystery of why thousands of octopus migrate to deep-sea thermal springs

Scientists solve mystery of why thousands of octopus migrate to deep-sea thermal springs

Planning algorithm enables high-performance flight

Planning algorithm enables high-performance flight

AI and the Future of Work: AI's impact on jobs and workforce transformation.

AI and the Future of Work: AI’s impact on jobs and workforce transformation.

AI for Disaster Relief Distribution: AI-optimized logistics for efficient disaster relief supply distribution.

AI for Disaster Relief Distribution: AI-optimized logistics for efficient disaster relief supply distribution.

AI for Food Quality Assurance: AI applications for monitoring food quality and safety.

AI for Food Quality Assurance: AI applications for monitoring food quality and safety.

AI for Mental Wellness Apps: AI-driven mental health applications and support platforms.

AI for Mental Wellness Apps: AI-driven mental health applications and support platforms.

AI in Dental Care: AI-assisted diagnostics and treatment planning in dentistry.

AI in Dental Care: AI-assisted diagnostics and treatment planning in dentistry.

AI in Language Education: AI-based language learning platforms and tools.

AI in Language Education: AI-based language learning platforms and tools.

AI in Oil Spill Cleanup: AI-driven approaches to manage and clean oil spills.

AI in Oil Spill Cleanup: AI-driven approaches to manage and clean oil spills.

AI in Sports Coaching: AI-powered coaching tools for athletes and teams.

AI in Sports Coaching: AI-powered coaching tools for athletes and teams.

AI unlikely to destroy most jobs, but clerical workers at risk, ILO says

AI unlikely to destroy most jobs, but clerical workers at risk, ILO says

Building new skills for existing employees top talent issue amid gen AI boom: Report

Building new skills for existing employees top talent issue amid gen AI boom: Report

Decoding future-ready talent strategies in the age of AI - ETHRWorldSEA

Decoding future-ready talent strategies in the age of AI – ETHRWorldSEA

Generative AI likely to augment rather than destroy jobs

Generative AI likely to augment rather than destroy jobs

Latest UN study finds artificial intelligence will surely take over these jobs soon: Report

Latest UN study finds artificial intelligence will surely take over these jobs soon: Report

Singapore workers are the world’s fastest in adopting AI skills, LinkedIn report says

Singapore workers are the world’s fastest in adopting AI skills, LinkedIn report says

AI and Gene Editing: AI's potential role in CRISPR gene editing technologies.

AI and Gene Editing: AI’s potential role in CRISPR gene editing technologies.

AI and Quantum Computing: Exploring the intersection of AI and quantum computing technologies.

AI and Quantum Computing: Exploring the intersection of AI and quantum computing technologies.

AI for Autonomous Drones: AI-driven decision-making in autonomous drone operations.

AI for Autonomous Drones: AI-driven decision-making in autonomous drone operations.

AI in Brain-Computer Interfaces: AI-powered BCI advancements for medical and assistive purposes.

AI in Brain-Computer Interfaces: AI-powered BCI advancements for medical and assistive purposes.

AI in Indigenous Language Preservation: Using AI to preserve and revitalize indigenous languages.

AI in Indigenous Language Preservation: Using AI to preserve and revitalize indigenous languages.

AI for Urban Planning: AI-driven models for urban infrastructure development and management.

AI for Urban Planning: AI-driven models for urban infrastructure development and management.

AMD: Almost half of enterprises risk ‘falling behind’ on AI

AMD: Almost half of enterprises risk ‘falling behind’ on AI

Study highlights impact of demographics on AI training

Study highlights impact of demographics on AI training

AI and Food Sustainability: AI applications for optimizing food production and reducing waste.

AI and Food Sustainability: AI applications for optimizing food production and reducing waste.

AI in Humanitarian Aid: AI's role in aiding humanitarian efforts and refugee assistance.

AI in Humanitarian Aid: AI’s role in aiding humanitarian efforts and refugee assistance.

AI for Wildlife Conservation: AI-driven approaches to protect endangered species and habitats.

AI for Wildlife Conservation: AI-driven approaches to protect endangered species and habitats.

AI in Ocean Exploration: AI applications in marine research and underwater robotics.

AI in Ocean Exploration: AI applications in marine research and underwater robotics.

AI and Drug Dosage Prediction: Personalized drug dosage recommendations using AI models.

AI and Drug Dosage Prediction: Personalized drug dosage recommendations using AI models.