Reinforcement learning allows underwater robots to locate and track objects underwater

Scientists from the Institut de Ciències del Mar (ICM-CSIC) in Barcelona, in collaboration with the Monterey Bay Aquarium Research Institute (MBARI) in California, the Universitat Politècnica de Catalunya (UPC), and the Universitat de Girona (UdG), have achieved a groundbreaking development in underwater robotics. They have demonstrated, for the first time, that reinforcement learning, a type of machine learning where a neural network learns the best actions to perform based on rewards, enables autonomous vehicles and underwater robots to locate and track marine objects and animals effectively.

The use of underwater robotics has become increasingly important for exploring the depths of the ocean, as these vehicles can reach depths of up to 4,000 meters and provide valuable in-situ data that complements satellite observations. This technology is instrumental in studying various phenomena, including CO2 capture by marine organisms, which plays a role in climate change regulation.

Reinforcement learning, commonly employed in control, robotics, and natural language processing applications like ChatGPT, allows neural networks to optimize specific tasks that would otherwise be challenging to achieve. By training the robots with this learning method, the researchers successfully optimized the trajectory of the vehicles, enabling them to locate and track moving underwater objects with precision.

Ivan Masmitjà, the lead author of the study, emphasizes the significance of this learning approach in advancing ecological research, such as studying migration and movement of marine species at different scales, using autonomous robots. Additionally, the technology’s progress will facilitate real-time monitoring of oceanographic instruments through a network of robots, with some operating on the surface and others on the seabed, transmitting data via satellite.

The team employed range acoustic techniques to estimate the position of objects based on distance measurements taken from different points. However, the accuracy of object localization depended on where the acoustic range measurements were taken. To address this issue, artificial intelligence, specifically reinforcement learning, was crucial in identifying the best points and determining the optimal trajectory for the robot.

The neural networks were trained using the computer cluster at the Barcelona Supercomputing Center (BSC-CNS), which houses one of Europe’s most powerful supercomputers. This significantly accelerated the parameter adjustments for different algorithms compared to conventional computers.

Overall, this breakthrough in underwater robotics and the successful application of reinforcement learning pave the way for more in-depth ecological studies, as well as enhanced oceanographic monitoring, through a network of autonomous underwater robots.

Posted in

Aihub Team

Leave a Comment





SK Telecom outlines its plans with AI partners

SK Telecom outlines its plans with AI partners

Razer and ClearBot are using AI and robotics to clean the oceans

Razer and ClearBot are using AI and robotics to clean the oceans

NHS receives AI fund to improve healthcare efficiency

NHS receives AI fund to improve healthcare efficiency

National Robotarium pioneers AI and telepresence robotic tech for remote health consultations

National Robotarium pioneers AI and telepresence robotic tech for remote health consultations

IBM’s AI-powered Mayflower ship crosses the Atlantic

IBM’s AI-powered Mayflower ship crosses the Atlantic

Humans are still beating AIs at drone racing

Humans are still beating AIs at drone racing

How artificial intelligence is dividing the world of work

How artificial intelligence is dividing the world of work

Global push to regulate artificial intelligence

Global push to regulate artificial intelligence

Georgia State researchers design artificial vision device for microrobots

Georgia State researchers design artificial vision device for microrobots

European Parliament adopts AI Act position

European Parliament adopts AI Act position

Chinese AI chipmaker Horizon endeavours to raise $700M to rival NVIDIA

Chinese AI chipmaker Horizon endeavours to raise $700M to rival NVIDIA

AI Day: Elon Musk unveils ‘friendly’ humanoid robot Tesla Bot

AI Day: Elon Musk unveils ‘friendly’ humanoid robot Tesla Bot

AI and Human-Computer Interaction: AI technologies for improving user interfaces, natural language interfaces, and gesture recognition.

AI and Data Privacy: Balancing AI advancements with privacy concerns and techniques for privacy-preserving AI.

AI and Virtual Assistants: AI-driven virtual assistants, chatbots, and voice assistants for personalized user interactions.

AI and Business Process Automation: AI-powered automation of repetitive tasks and decision-making in business processes.

AI and Social Media: AI algorithms for content recommendation, sentiment analysis, and social network analysis.

AI for Environmental Monitoring: AI applications in monitoring and protecting the environment, including wildlife tracking and climate modeling.

AI in Cybersecurity: AI systems for threat detection, anomaly detection, and intelligent security analysis.

AI in Gaming: The use of AI techniques in game development, character behavior, and procedural content generation.

AI in Autonomous Vehicles: AI technologies powering self-driving cars and intelligent transportation systems.

AI Ethics: Ethical considerations and guidelines for the responsible development and use of AI systems.

AI in Education: AI-based systems for personalized learning, adaptive assessments, and intelligent tutoring.

AI in Finance: The use of AI algorithms for fraud detection, risk assessment, trading, and portfolio management in the financial sector.

AI in Healthcare: Applications of AI in medical diagnosis, drug discovery, patient monitoring, and personalized medicine.

Robotics: The integration of AI and robotics, enabling machines to perform physical tasks autonomously.

Explainable AI: Techniques and methods for making AI systems more transparent and interpretable

Reinforcement Learning: AI agents that learn through trial and error by interacting with an environment

Computer Vision: AI systems capable of interpreting and understanding visual data.

Natural Language Processing: AI techniques for understanding and processing human language.