Reinforcement learning allows underwater robots to locate and track objects underwater

Scientists from the Institut de Ciències del Mar (ICM-CSIC) in Barcelona, in collaboration with the Monterey Bay Aquarium Research Institute (MBARI) in California, the Universitat Politècnica de Catalunya (UPC), and the Universitat de Girona (UdG), have achieved a groundbreaking development in underwater robotics. They have demonstrated, for the first time, that reinforcement learning, a type of machine learning where a neural network learns the best actions to perform based on rewards, enables autonomous vehicles and underwater robots to locate and track marine objects and animals effectively.

The use of underwater robotics has become increasingly important for exploring the depths of the ocean, as these vehicles can reach depths of up to 4,000 meters and provide valuable in-situ data that complements satellite observations. This technology is instrumental in studying various phenomena, including CO2 capture by marine organisms, which plays a role in climate change regulation.

Reinforcement learning, commonly employed in control, robotics, and natural language processing applications like ChatGPT, allows neural networks to optimize specific tasks that would otherwise be challenging to achieve. By training the robots with this learning method, the researchers successfully optimized the trajectory of the vehicles, enabling them to locate and track moving underwater objects with precision.

Ivan Masmitjà, the lead author of the study, emphasizes the significance of this learning approach in advancing ecological research, such as studying migration and movement of marine species at different scales, using autonomous robots. Additionally, the technology’s progress will facilitate real-time monitoring of oceanographic instruments through a network of robots, with some operating on the surface and others on the seabed, transmitting data via satellite.

The team employed range acoustic techniques to estimate the position of objects based on distance measurements taken from different points. However, the accuracy of object localization depended on where the acoustic range measurements were taken. To address this issue, artificial intelligence, specifically reinforcement learning, was crucial in identifying the best points and determining the optimal trajectory for the robot.

The neural networks were trained using the computer cluster at the Barcelona Supercomputing Center (BSC-CNS), which houses one of Europe’s most powerful supercomputers. This significantly accelerated the parameter adjustments for different algorithms compared to conventional computers.

Overall, this breakthrough in underwater robotics and the successful application of reinforcement learning pave the way for more in-depth ecological studies, as well as enhanced oceanographic monitoring, through a network of autonomous underwater robots.

Posted in

Aihub Team

Leave a Comment





AI in Agriculture

AI in Agriculture

The Future of Intelligent Content Management, Semantic AI, and Content Impact

The Future of Intelligent Content Management, Semantic AI, and Content Impact

The Future of Enterprise Content in the Era of AI

The Future of Enterprise Content in the Era of AI

The Art of the Practical - Making AI Real

The Art of the Practical – Making AI Real

AI: Making Data Protection Simpler

AI: Making Data Protection Simpler

Will Generative AI Aid Instead of Replace Workers?

Will Generative AI Aid Instead of Replace Workers?

UK: AI’s Impact on Workplace Safety

UK: AI’s Impact on Workplace Safety

Stay Abreast of Laws Restricting AI in the Workplace

Stay Abreast of Laws Restricting AI in the Workplace

Oracle introduces generative AI capabilities to support HR functions and productivity

Oracle introduces generative AI capabilities to support HR functions and productivity

Discovering hidden talent: How AI-powered talent marketplaces benefit employers

Discovering hidden talent: How AI-powered talent marketplaces benefit employers

Understanding Machine Learning Algorithms

Understanding Machine Learning Algorithms

Understanding Generative Adversarial Networks (GANs)

Understanding Generative Adversarial Networks (GANs)

The Impact of AI on the Job Market and Future of Work

The Impact of AI on the Job Market and Future of Work

The Basics of Artificial Intelligence

The Basics of Artificial Intelligence

Reinforcement Learning: Training AI Agents to Make Decisions

Reinforcement Learning: Training AI Agents to Make Decisions

Natural Language Processing Unleashing the Power of Text

Natural Language Processing Unleashing the Power of Text

How AI is Transforming Industries

How AI is Transforming Industries

Exploring Neural Networks and Deep Learning

Exploring Neural Networks and Deep Learning

Ethical Considerations in Artificial Intelligence

Ethical Considerations in Artificial Intelligence

Computer Vision and Image Recognition in AI

Computer Vision and Image Recognition in AI

ARTIFICIAL INTELLIGENCE IN LOGISTICS

ARTIFICIAL INTELLIGENCE IN LOGISTICS

On Artificial Intelligence - A European approach to excellence and trust

On Artificial Intelligence – A European approach to excellence and trust

AI in Healthcare Advancements and Applications

AI in Healthcare Advancements and Applications

AI in Financial Services: Opportunities and Challenges

AI in Financial Services: Opportunities and Challenges

AI in Customer Service: Improving User Experience

AI in Customer Service: Improving User Experience

AI and Robotics: Synergies and Applications

AI and Robotics: Synergies and Applications

AI and Data Science: Bridging the Gap

AI and Data Science: Bridging the Gap

Top 10 emerging AI and ML uses in data centres

Top 10 emerging AI and ML uses in data centres

Piero Molino, Predibase: On low-code machine learning and LLMs

Piero Molino, Predibase: On low-code machine learning and LLMs

OpenAI’s first global office will be in London

OpenAI’s first global office will be in London