Reinforcement Learning: AI agents that learn through trial and error by interacting with an environment

Agent: The RL agent is the entity that learns and makes decisions. It observes the environment, takes actions, and receives feedback. Environment: The environment is the context in which the RL agent operates. It can be a virtual or physical world, and it provides feedback to the agent based on its actions. State: The state represents the current condition or configuration of the environment. It provides relevant information to the agent for decision-making. Actions: Actions are the choices made by the RL agent in response to the observed state.

The agent selects actions based on its policy, which is the strategy for decision-making. Rewards: Rewards are the signals the agent receives from the environment after taking actions. They indicate the desirability or quality of the agent’s behavior. Positive rewards reinforce good actions, while negative rewards (penalties) discourage undesired actions. Exploration and Exploitation: RL agents need to balance exploration and exploitation.

Exploration involves trying out different actions to discover optimal behavior, while exploitation involves maximizing rewards based on the agent’s current knowledge. Q-Learning and Policy Gradient: RL algorithms use various techniques to learn optimal behavior. Q-Learning is a popular model-free RL algorithm that estimates the value of taking an action in a specific state. Policy Gradient methods directly learn a policy, which is a mapping from states to actions, by optimizing the expected cumulative reward.

Applications: RL has been successfully applied in various domains, including robotics, game playing, recommendation systems, autonomous vehicles, and resource management. RL has achieved notable successes, such as AlphaGo, an RL-based program that defeated human champions in the game of Go. Reinforcement learning offers a powerful framework for training intelligent agents to learn and make decisions in complex and dynamic environments. It has the potential to drive advancements in autonomous systems, optimization, and adaptive decision-making.

Posted in

adm 2

Leave a Comment





Meta bets on AI chatbots to retain users

Meta bets on AI chatbots to retain users

GPT-3 can reason about as well as a college student, psychologists report

GPT-3 can reason about as well as a college student, psychologists report

Explosive growth in AI and ML fuels expertise demand

Explosive growth in AI and ML fuels expertise demand

AI regulation: A pro-innovation approach – EU vs UK

AI regulation: A pro-innovation approach – EU vs UK

Reopening the Economy: How AI Is Providing Guidance

Reopening the Economy: How AI Is Providing Guidance

Paving the Way for Diversity in the Decade of Ubiquitous AI

Paving the Way for Diversity in the Decade of Ubiquitous AI

On Privacy Day, Remembering How Much Work Still Lies Ahead

On Privacy Day, Remembering How Much Work Still Lies Ahead

Lessons from Space May Help Care for Those Living Through Social Isolation on Earth

Lessons from Space May Help Care for Those Living Through Social Isolation on Earth

Igniting the Dynamic Workforce in Your Company

Igniting the Dynamic Workforce in Your Company

How IBM is Advancing AI Once Again & Why it Matters to Your Business

How IBM is Advancing AI Once Again & Why it Matters to Your Business

How AI is Driving the New Industrial Revolution

How AI is Driving the New Industrial Revolution

How AI and Weather Data Can Help You Plan for Allergy Season

How AI and Weather Data Can Help You Plan for Allergy Season

Automotive Data Privacy: Securing Software at Speed & Scale

Automotive Data Privacy: Securing Software at Speed & Scale

Accelerating Digital Transformation with DataOps

Accelerating Digital Transformation with DataOps

Yuval Noah Harari: AI and the future of humanity | Frontiers Forum Live 2023

Yuval Noah Harari: AI and the future of humanity | Frontiers Forum Live 2023

OpenAI created a PHYSICAL ROBOT?! (NEO = GPT-5 WITH BODY)

OpenAI created a PHYSICAL ROBOT?! (NEO = GPT-5 WITH BODY)

London Conference 2023: How can countries respond to great power competition?

London Conference 2023: How can countries respond to great power competition?

AI vs Machine Learning

AI vs Machine Learning

Interview with Mr.Yoshua Bengio

Interview with Mr.Yoshua Bengio

Interview with Mr.Nick Bostrom

Interview with Mr.Nick Bostrom

Interview with Mr.Stuart J. Russell

Interview with Mr.Stuart J. Russell

This 3D printed gripper doesn't need electronics to function

This 3D printed gripper doesn’t need electronics to function

Robotic hand rotates objects using touch, not vision

Robotic hand rotates objects using touch, not vision

Researchers develop low-cost sensor to enhance robots' sense of touch

Researchers develop low-cost sensor to enhance robots’ sense of touch

Reinforcement learning allows underwater robots to locate and track objects underwater

Reinforcement learning allows underwater robots to locate and track objects underwater

Artificial Intelligence Microscopy Market is Going to Boom | CAMECA, Celly.AI Corporation, Hitachi High-Tech Corporation, JEOL Ltd., Life Technologies Corporation, a Thermo Fisher Scientific company, Motic

Artificial Intelligence Microscopy Market is Going to Boom | CAMECA, Celly.AI Corporation, Hitachi High-Tech Corporation, JEOL Ltd., Life Technologies Corporation, a Thermo Fisher Scientific company, Motic

The Importance of Creating a Culture of Data

The Importance of Creating a Culture of Data

Scaling the AI Ladder

Scaling the AI Ladder

How to Accelerate the Use of AI in Organizations

How to Accelerate the Use of AI in Organizations

How IBM and Salesforce Are Challenging Traditional Business Models

How IBM and Salesforce Are Challenging Traditional Business Models