Piero Molino, Predibase: On low-code machine learning and LLMs

During the AI & Big Data Expo, AI News interviewed Piero Molino, the CEO and co-founder of Predibase, discussing the significance of low-code in machine learning and the trends surrounding Large Language Models (LLMs).

Predibase is a declarative machine learning platform that aims to simplify and democratize the development and deployment of machine learning models. The company’s mission is to make machine learning accessible to both expert organizations and developers new to the field.

The platform enables organizations with in-house experts to enhance their capabilities and reduce development time from months to just days. It also caters to developers seeking to integrate machine learning into their products but lacking expertise.

Predibase eliminates the need for extensive low-level machine learning code by providing a simple configuration file called a YAML file. This file, consisting of only 10 lines specifying the data schema, allows developers to avoid the complexities of coding.

At the expo, Predibase announced the general availability of its platform. One of its key features is the abstraction of infrastructure provisioning complexities. Users can effortlessly run training, deployment, and inference jobs on a single CPU machine or scale up to 1000 GPU machines with a few clicks. The platform also facilitates easy integration with various data sources, regardless of the data structure.

Molino emphasized the importance of low-code development in driving machine learning adoption. Simplifying the process reduces development time, lowering barriers for organizations to experiment with new use cases and unlock value.

Molino also discussed the increasing interest in Large Language Models. He recognized their transformative power and the shift they bring to AI and machine learning. Large Language Models enable querying the model directly for predictions, eliminating the need for extensive data collection and labeling.

However, Molino highlighted some challenges, such as the cost and scalability of per-query pricing models, slow inference speeds, and concerns over data privacy when using third-party APIs. Predibase addresses these challenges by allowing customers to deploy their models in a virtual private cloud, ensuring data privacy and control.

Molino shared insights into common mistakes made by businesses venturing into machine learning. He emphasized the importance of understanding the data, use case, and business context before diving into development. Predibase’s platform enables hypothesis testing and integrates data understanding with model training to validate the suitability of models for specific tasks.

The general availability launch of Predibase’s platform signifies a significant milestone in their mission to democratize machine learning. By simplifying the development process, Predibase aims to unlock the full potential of machine learning for organizations and developers alike.

Posted in

Aihub Team

Leave a Comment





News firms seek transparency, collective negotiation over content use by AI makers - letter

News firms seek transparency, collective negotiation over content use by AI makers – letter

White House launches AI-based contest to secure government systems from hacks

White House launches AI-based contest to secure government systems from hacks

Britain appoints tech expert and diplomat to spearhead AI summit

Britain appoints tech expert and diplomat to spearhead AI summit

AI Drafted in War on Online Crimes Against Kids

AI Drafted in War on Online Crimes Against Kids

AI for Disaster Recovery: AI-powered systems for post-disaster recovery and reconstruction.

AI for Disaster Recovery: AI-powered systems for post-disaster recovery and reconstruction.

AI in Drug Repurposing: AI-driven drug discovery for repurposing existing medications.

AI in Drug Repurposing: AI-driven drug discovery for repurposing existing medications.

AI in Augmented Reality: Enhancing AR experiences with AI-generated content and interactions.

AI in Augmented Reality: Enhancing AR experiences with AI-generated content and interactions.

AI in Oil and Gas Exploration: AI applications in seismic data analysis for oil exploration.

AI in Oil and Gas Exploration: AI applications in seismic data analysis for oil exploration.

AI in Podcasting: AI-driven podcast transcription and content recommendation.

AI in Podcasting: AI-driven podcast transcription and content recommendation.

AI in Speech Recognition: Improving speech recognition and transcription with AI algorithms.

AI in Speech Recognition: Improving speech recognition and transcription with AI algorithms.

AI and Blockchain Integration: The potential of combining AI and blockchain technologies.

AI and Blockchain Integration: The potential of combining AI and blockchain technologies.

AI for Wildlife Tracking: AI-enabled tracking systems for studying animal migration and behavior.

AI for Wildlife Tracking: AI-enabled tracking systems for studying animal migration and behavior.

Combating Global Health Crises: The Power of AI in Epidemic Prediction and Prevention

Combating Global Health Crises: The Power of AI in Epidemic Prediction and Prevention

Global cloud market soars again, but AI could pose a risk

Global cloud market soars again, but AI could pose a risk

Interview Mrs.Anita Schjøll Brede

Interview Mrs.Anita Schjøll Brede

Interview with Mr.Jürgen Schmidhuber

Interview with Mr.Jürgen Schmidhuber

Interview with Mr.Fei-Fei Li

Interview with Dr.Fei-Fei Li

AI and Music Composition: The intersection of AI and creativity in composing music.

AI and Music Composition: The intersection of AI and creativity in composing music.

AI in Art Authentication: AI techniques for art forgery detection and provenance verification.

AI in Art Authentication: AI techniques for art forgery detection and provenance verification.

AI for Accessibility: How AI is making technology more accessible for individuals with disabilities.

AI for Accessibility: How AI is making technology more accessible for individuals with disabilities.

AI in Retail Personalization: Customizing shopping experiences with AI-driven recommendations.

AI in Retail Personalization: Customizing shopping experiences with AI-driven recommendations.

AI in Supply Chain Management: AI-driven optimization of supply chain logistics and inventory management.

AI in Supply Chain Management: AI-driven optimization of supply chain logistics and inventory management.

AI in Veterinary Medicine: AI applications for animal health diagnosis and treatment.

AI in Veterinary Medicine: AI applications for animal health diagnosis and treatment.

AI and Genome Sequencing: AI's contribution to accelerating genomic research and precision medicine.

AI and Genome Sequencing: AI’s contribution to accelerating genomic research and precision medicine.

AI and Drone Technology: AI's role in enhancing drone capabilities for various industries.

AI and Drone Technology: AI’s role in enhancing drone capabilities for various industries.

AI in Transportation: Innovations in autonomous vehicles and AI for traffic management.

AI in Transportation: Innovations in autonomous vehicles and AI for traffic management.

AI in Environmental Monitoring: AI applications for monitoring air and water quality.

AI in Environmental Monitoring: AI applications for monitoring air and water quality.

AI in Criminal Justice: AI's impact on crime prevention, offender profiling, and legal analytics.

AI in Criminal Justice: AI’s impact on crime prevention, offender profiling, and legal analytics.

AI for Elderly Care: Enhancing senior care with AI-powered health monitoring and companionship.

AI for Elderly Care: Enhancing senior care with AI-powered health monitoring and companionship.

AI and Disaster Prediction: Predicting natural disasters using AI-based models and algorithms.

AI and Disaster Prediction: Predicting natural disasters using AI-based models and algorithms.