Modified virtual reality tech can measure brain activity

A team of researchers from The University of Texas at Austin has enhanced a commercial virtual reality headset to incorporate brain activity measurement capabilities, enabling the study of human reactions to stimuli like hints and stressors.

By integrating a noninvasive electroencephalogram (EEG) sensor into a Meta VR headset, the research team has developed a comfortable and wearable device for long-term use. The EEG sensor captures the brain’s electrical signals during immersive virtual reality interactions.

This innovation holds diverse potential applications, ranging from aiding individuals with anxiety to assessing the attention and mental stress levels of pilots using flight simulators. Additionally, it allows individuals to perceive the world through a robot’s eyes.

Nanshu Lu, a professor at the Cockrell School of Engineering’s Department of Aerospace Engineering and Engineering Mechanics, who led the research, emphasized the heightened immersion of virtual reality and the ability of their technology to yield improved measurements of brain responses within such environments.

Although the combination of VR and EEG sensors exists in the commercial domain, the researchers note that current devices are expensive and less comfortable for users, thus limiting their usage duration and applications.

Addressing these challenges, the team designed soft, conductive, and spongy electrodes that overcome issues related to traditional electrodes. These modified VR headsets integrate these electrodes into the top strap and forehead pad, utilizing a flexible circuit with conductive traces similar to electronic tattoos, along with an EEG recording device attached to the headset’s rear.

This technology aligns with a larger research initiative at UT Austin focused on a robot delivery network, which will also facilitate an extensive study of human-robot interactions. The VR headsets, enhanced with EEG capabilities, will enable observers to experience events from a robot’s perspective and simultaneously measure the cognitive load of prolonged observations.

To validate the effectiveness of the VR EEG headset, the researchers developed a driving simulation game. Collaborating with José del R. Millán, an expert in brain-machine interfaces, the team created a scenario where users respond to turn commands by pressing a button, and the EEG records brain activity to assess their attention levels.

The researchers have initiated preliminary patent procedures for their EEG technology and are open to collaborations with VR companies to integrate their innovation directly into VR headsets.

The research team includes experts from various departments such as Electrical and Computer Engineering, Aerospace Engineering and Engineering Mechanics, Mechanical Engineering, Biomedical Engineering, and Artue Associates Inc. in South Korea.

Posted in

Aihub Team

Leave a Comment





AI in Agriculture

AI in Agriculture

The Future of Intelligent Content Management, Semantic AI, and Content Impact

The Future of Intelligent Content Management, Semantic AI, and Content Impact

The Future of Enterprise Content in the Era of AI

The Future of Enterprise Content in the Era of AI

The Art of the Practical - Making AI Real

The Art of the Practical – Making AI Real

AI: Making Data Protection Simpler

AI: Making Data Protection Simpler

Will Generative AI Aid Instead of Replace Workers?

Will Generative AI Aid Instead of Replace Workers?

UK: AI’s Impact on Workplace Safety

UK: AI’s Impact on Workplace Safety

Stay Abreast of Laws Restricting AI in the Workplace

Stay Abreast of Laws Restricting AI in the Workplace

Oracle introduces generative AI capabilities to support HR functions and productivity

Oracle introduces generative AI capabilities to support HR functions and productivity

Discovering hidden talent: How AI-powered talent marketplaces benefit employers

Discovering hidden talent: How AI-powered talent marketplaces benefit employers

Understanding Machine Learning Algorithms

Understanding Machine Learning Algorithms

Understanding Generative Adversarial Networks (GANs)

Understanding Generative Adversarial Networks (GANs)

The Impact of AI on the Job Market and Future of Work

The Impact of AI on the Job Market and Future of Work

The Basics of Artificial Intelligence

The Basics of Artificial Intelligence

Reinforcement Learning: Training AI Agents to Make Decisions

Reinforcement Learning: Training AI Agents to Make Decisions

Natural Language Processing Unleashing the Power of Text

Natural Language Processing Unleashing the Power of Text

How AI is Transforming Industries

How AI is Transforming Industries

Exploring Neural Networks and Deep Learning

Exploring Neural Networks and Deep Learning

Ethical Considerations in Artificial Intelligence

Ethical Considerations in Artificial Intelligence

Computer Vision and Image Recognition in AI

Computer Vision and Image Recognition in AI

ARTIFICIAL INTELLIGENCE IN LOGISTICS

ARTIFICIAL INTELLIGENCE IN LOGISTICS

On Artificial Intelligence - A European approach to excellence and trust

On Artificial Intelligence – A European approach to excellence and trust

AI in Healthcare Advancements and Applications

AI in Healthcare Advancements and Applications

AI in Financial Services: Opportunities and Challenges

AI in Financial Services: Opportunities and Challenges

AI in Customer Service: Improving User Experience

AI in Customer Service: Improving User Experience

AI and Robotics: Synergies and Applications

AI and Robotics: Synergies and Applications

AI and Data Science: Bridging the Gap

AI and Data Science: Bridging the Gap

Top 10 emerging AI and ML uses in data centres

Top 10 emerging AI and ML uses in data centres

Piero Molino, Predibase: On low-code machine learning and LLMs

Piero Molino, Predibase: On low-code machine learning and LLMs

OpenAI’s first global office will be in London

OpenAI’s first global office will be in London