Building reliable Machine Learning models with limited training data

Researchers from the University of Cambridge and Cornell University have made a breakthrough in developing Machine Learning models capable of comprehending complex equations in real-world scenarios with significantly less training data than previously thought necessary. Their discovery particularly applies to partial differential equations (PDEs), a class of physical equations that describe how natural phenomena evolve over space and time. This achievement has been detailed in their study, titled ‘Elliptic PDE learning is provably data-efficient,’ published in the Proceedings of the National Academy of Sciences.

Traditionally, Machine Learning models require substantial amounts of training data to deliver accurate results, typically involving humans annotating extensive datasets, such as image collections. Dr. Nicolas Boullé, the first author of the study, noted that this manual training process, while effective, is also time-consuming and costly. The researchers aimed to determine the minimum amount of data required to train models effectively while maintaining reliability.

The team’s focus was on partial differential equations (PDEs), which serve as fundamental tools in understanding physical laws governing natural phenomena. These equations, known for their relative simplicity, provided a basis for investigating why Machine Learning techniques have proven successful in physics and similar domains.

The researchers discovered that PDEs modeling diffusion possess a structure conducive to designing AI models. By incorporating known physics into the training data, they were able to enhance accuracy and performance. They developed an efficient algorithm to predict solutions for PDEs under various conditions, leveraging both short and long-range interactions within the equations. This approach enabled them to determine that, particularly in the field of physics, Machine Learning models can be reliable with relatively limited training data.

The researchers anticipate that their techniques will empower data scientists to demystify the inner workings of many Machine Learning models and design models that can be interpreted by humans. Nevertheless, further research is required to ensure that these models are learning the correct principles. The intersection of Machine Learning and physics promises exciting opportunities to address complex mathematical and physical questions.

Posted in

Aihub Team

Leave a Comment





Meta bets on AI chatbots to retain users

Meta bets on AI chatbots to retain users

GPT-3 can reason about as well as a college student, psychologists report

GPT-3 can reason about as well as a college student, psychologists report

Explosive growth in AI and ML fuels expertise demand

Explosive growth in AI and ML fuels expertise demand

AI regulation: A pro-innovation approach – EU vs UK

AI regulation: A pro-innovation approach – EU vs UK

Reopening the Economy: How AI Is Providing Guidance

Reopening the Economy: How AI Is Providing Guidance

Paving the Way for Diversity in the Decade of Ubiquitous AI

Paving the Way for Diversity in the Decade of Ubiquitous AI

On Privacy Day, Remembering How Much Work Still Lies Ahead

On Privacy Day, Remembering How Much Work Still Lies Ahead

Lessons from Space May Help Care for Those Living Through Social Isolation on Earth

Lessons from Space May Help Care for Those Living Through Social Isolation on Earth

Igniting the Dynamic Workforce in Your Company

Igniting the Dynamic Workforce in Your Company

How IBM is Advancing AI Once Again & Why it Matters to Your Business

How IBM is Advancing AI Once Again & Why it Matters to Your Business

How AI is Driving the New Industrial Revolution

How AI is Driving the New Industrial Revolution

How AI and Weather Data Can Help You Plan for Allergy Season

How AI and Weather Data Can Help You Plan for Allergy Season

Automotive Data Privacy: Securing Software at Speed & Scale

Automotive Data Privacy: Securing Software at Speed & Scale

Accelerating Digital Transformation with DataOps

Accelerating Digital Transformation with DataOps

Yuval Noah Harari: AI and the future of humanity | Frontiers Forum Live 2023

Yuval Noah Harari: AI and the future of humanity | Frontiers Forum Live 2023

OpenAI created a PHYSICAL ROBOT?! (NEO = GPT-5 WITH BODY)

OpenAI created a PHYSICAL ROBOT?! (NEO = GPT-5 WITH BODY)

London Conference 2023: How can countries respond to great power competition?

London Conference 2023: How can countries respond to great power competition?

AI vs Machine Learning

AI vs Machine Learning

Interview with Mr.Yoshua Bengio

Interview with Mr.Yoshua Bengio

Interview with Mr.Nick Bostrom

Interview with Mr.Nick Bostrom

Interview with Mr.Stuart J. Russell

Interview with Mr.Stuart J. Russell

This 3D printed gripper doesn't need electronics to function

This 3D printed gripper doesn’t need electronics to function

Robotic hand rotates objects using touch, not vision

Robotic hand rotates objects using touch, not vision

Researchers develop low-cost sensor to enhance robots' sense of touch

Researchers develop low-cost sensor to enhance robots’ sense of touch

Reinforcement learning allows underwater robots to locate and track objects underwater

Reinforcement learning allows underwater robots to locate and track objects underwater

Artificial Intelligence Microscopy Market is Going to Boom | CAMECA, Celly.AI Corporation, Hitachi High-Tech Corporation, JEOL Ltd., Life Technologies Corporation, a Thermo Fisher Scientific company, Motic

Artificial Intelligence Microscopy Market is Going to Boom | CAMECA, Celly.AI Corporation, Hitachi High-Tech Corporation, JEOL Ltd., Life Technologies Corporation, a Thermo Fisher Scientific company, Motic

The Importance of Creating a Culture of Data

The Importance of Creating a Culture of Data

Scaling the AI Ladder

Scaling the AI Ladder

How to Accelerate the Use of AI in Organizations

How to Accelerate the Use of AI in Organizations

How IBM and Salesforce Are Challenging Traditional Business Models

How IBM and Salesforce Are Challenging Traditional Business Models