Building reliable Machine Learning models with limited training data

Researchers from the University of Cambridge and Cornell University have made a breakthrough in developing Machine Learning models capable of comprehending complex equations in real-world scenarios with significantly less training data than previously thought necessary. Their discovery particularly applies to partial differential equations (PDEs), a class of physical equations that describe how natural phenomena evolve over space and time. This achievement has been detailed in their study, titled ‘Elliptic PDE learning is provably data-efficient,’ published in the Proceedings of the National Academy of Sciences.

Traditionally, Machine Learning models require substantial amounts of training data to deliver accurate results, typically involving humans annotating extensive datasets, such as image collections. Dr. Nicolas Boullé, the first author of the study, noted that this manual training process, while effective, is also time-consuming and costly. The researchers aimed to determine the minimum amount of data required to train models effectively while maintaining reliability.

The team’s focus was on partial differential equations (PDEs), which serve as fundamental tools in understanding physical laws governing natural phenomena. These equations, known for their relative simplicity, provided a basis for investigating why Machine Learning techniques have proven successful in physics and similar domains.

The researchers discovered that PDEs modeling diffusion possess a structure conducive to designing AI models. By incorporating known physics into the training data, they were able to enhance accuracy and performance. They developed an efficient algorithm to predict solutions for PDEs under various conditions, leveraging both short and long-range interactions within the equations. This approach enabled them to determine that, particularly in the field of physics, Machine Learning models can be reliable with relatively limited training data.

The researchers anticipate that their techniques will empower data scientists to demystify the inner workings of many Machine Learning models and design models that can be interpreted by humans. Nevertheless, further research is required to ensure that these models are learning the correct principles. The intersection of Machine Learning and physics promises exciting opportunities to address complex mathematical and physical questions.

Posted in

Aihub Team

Leave a Comment





AI in Agriculture

AI in Agriculture

The Future of Intelligent Content Management, Semantic AI, and Content Impact

The Future of Intelligent Content Management, Semantic AI, and Content Impact

The Future of Enterprise Content in the Era of AI

The Future of Enterprise Content in the Era of AI

The Art of the Practical - Making AI Real

The Art of the Practical – Making AI Real

AI: Making Data Protection Simpler

AI: Making Data Protection Simpler

Will Generative AI Aid Instead of Replace Workers?

Will Generative AI Aid Instead of Replace Workers?

UK: AI’s Impact on Workplace Safety

UK: AI’s Impact on Workplace Safety

Stay Abreast of Laws Restricting AI in the Workplace

Stay Abreast of Laws Restricting AI in the Workplace

Oracle introduces generative AI capabilities to support HR functions and productivity

Oracle introduces generative AI capabilities to support HR functions and productivity

Discovering hidden talent: How AI-powered talent marketplaces benefit employers

Discovering hidden talent: How AI-powered talent marketplaces benefit employers

Understanding Machine Learning Algorithms

Understanding Machine Learning Algorithms

Understanding Generative Adversarial Networks (GANs)

Understanding Generative Adversarial Networks (GANs)

The Impact of AI on the Job Market and Future of Work

The Impact of AI on the Job Market and Future of Work

The Basics of Artificial Intelligence

The Basics of Artificial Intelligence

Reinforcement Learning: Training AI Agents to Make Decisions

Reinforcement Learning: Training AI Agents to Make Decisions

Natural Language Processing Unleashing the Power of Text

Natural Language Processing Unleashing the Power of Text

How AI is Transforming Industries

How AI is Transforming Industries

Exploring Neural Networks and Deep Learning

Exploring Neural Networks and Deep Learning

Ethical Considerations in Artificial Intelligence

Ethical Considerations in Artificial Intelligence

Computer Vision and Image Recognition in AI

Computer Vision and Image Recognition in AI

ARTIFICIAL INTELLIGENCE IN LOGISTICS

ARTIFICIAL INTELLIGENCE IN LOGISTICS

On Artificial Intelligence - A European approach to excellence and trust

On Artificial Intelligence – A European approach to excellence and trust

AI in Healthcare Advancements and Applications

AI in Healthcare Advancements and Applications

AI in Financial Services: Opportunities and Challenges

AI in Financial Services: Opportunities and Challenges

AI in Customer Service: Improving User Experience

AI in Customer Service: Improving User Experience

AI and Robotics: Synergies and Applications

AI and Robotics: Synergies and Applications

AI and Data Science: Bridging the Gap

AI and Data Science: Bridging the Gap

Top 10 emerging AI and ML uses in data centres

Top 10 emerging AI and ML uses in data centres

Piero Molino, Predibase: On low-code machine learning and LLMs

Piero Molino, Predibase: On low-code machine learning and LLMs

OpenAI’s first global office will be in London

OpenAI’s first global office will be in London